Pulseless Electrical Activity

Amal Mattu, MD, FAAEM, FACEP
Professor and Vice Chair
Department of Emergency Medicine
University of Maryland School of Medicine
Baltimore, Maryland
Case
Case

• 55 yo M brought by EMS for cardiac arrest
Case

- 55 yo M brought by EMS for cardiac arrest
 - Visiting Baltimore for convention
 - Was with colleagues and told them that he wasn’t feeling well
Case

- 55 yo M brought by EMS for cardiac arrest
 - Visiting Baltimore for convention
 - Was with colleagues and told them that he wasn’t feeling well
 - Slumped over at the breakfast table and fell to the floor
Case

- 55 yo M brought by EMS for cardiac arrest
 - Friends called 911 immediately, ± CPR
 - EMS arrived (BLS) after 5-10 min
Case

- 55 yo M brought by EMS for cardiac arrest
 - Friends called 911 immediately, ± CPR
 - EMS arrived (BLS) after 5-10 min
Case

- 55 yo M brought by EMS for cardiac arrest
 - Friends called 911 immediately, ± CPR
 - EMS arrived (BLS) after 5-10 min
- No pulse or spont. respirations
- Compressions, bagging
Case

Courtesy Dr. Eric Lung
Case

- 55 yo M brought by EMS for cardiac arrest
 - Patient arrives with same rhythm...what do you do?
Questions

• What is PEA??
 – Pulseless electrical activity
 – Formerly referred to as EMD
• “Electromechanical dissociation”
• PEA is defined by a rhythm that should normally produce a pulse
 – Not VF, VT, torsades, rapid afib, etc.
 – Not extreme bradycardia
 – Not brady-asystole (agonal)
• These other rhythms have different protocols for treatment
• Pulseless electrical activity
 – Increasing proportion of SCA rhythms over the past several decades
PEA

• Pulseless electrical activity
 – Increasing proportion of SCA rhythms over the past several decades
• 35-40% of in-hospital cardiac arrests
• 22-30% of OOHCA
• Reduction in % of VF possibly due to increased use of beta-blockers?
Cardiac Arrest “Types”

- Electrical mechanisms associated with SCA are generally divided into tachyarrhythmic and non-tachyarrhythmic categories
Cardiac Arrest “Types”

- Non-tachyarrhythmic categories
 - PEA
 - Asystole
 - Extreme bradycardia, agonal
ACLS and PEA

• What does ACLS recommend for PEA?
ACLS and PEA

- What does ACLS recommend for PEA?
 - Vasopressors → EPI, VP
 - IVF?
 - Atropine if rhythm is slow
 - Compressions?
ACLS and PEA

• What does ACLS recommend for PEA?
 – Would you do compressions on this patient in PEA? Would it hurt??
ACLS and PEA

- What does ACLS recommend for PEA?
 - Dx: pericardial tamponade
 - Compressions might be harmful
What does ACLS recommend for PEA?
- Vasopressors → EPI, VP
- IVF?
- Atropine if rhythm is slow
- Compressions?
- Then quickly determine and treat the underlying cause
ACLS and PEA

- The H’s and T’s
ACLS and PEA

- The H’s and T’s
ACLS and PEA

• H’s

• T’s
ACLS and PEA

- **H’s**
 - Hypovolemia
 - Hypoxia
 - Hydrogen ion (acidosis)
 - HyperK
 - HypoK
 - Hypothermia
 - Hypoglycemia

- **T’s**
ACLS and PEA

H’s
- Hypovolemic
- Hypoxia
- Hydrogen ion (acidosis)
- HyperK
- HypoK
- Hypothermia
- Hypoglycemia

T’s
- Toxins
- Tamponade
- Tension PTX
- Thrombosis (MI)
- Thrombosis (PE)
- Trauma (hemorrhage)
ACLS and PEA

- Is there an easier method?
A Simplified and Structured Teaching Tool for the Evaluation and Management of Pulseless Electrical Activity

Laszlo Littmanna Devin J. Bustinb Michael W. Haleya, c

Departments of aInternal Medicine and bEmergency Medicine, and cPulmonary and Critical Care Consultants, Carolinas Medical Center, Charlotte, N.C., USA
Littman, et al. approach to PEA

- What is the likelihood of the Hs and Ts causing PEA?
 - Which are the truly common causes?

- Is there a simple, rational approach to workup and treatment?
Littman, et al. approach to PEA

- Use the ECG and U/S
Littman, et al. approach to PEA

• Step 1: use the ECG
Littman, et al. approach to PEA

• Is the QRS narrow or wide?
Littman, et al. approach to PEA

- Narrow QRS \rightarrow RV inflow or outflow problem ("pseudo-PEA")
 - Tamponade
 - Tension PTX
 - Mechanical hyperinflation
 - Massive PE
 - Severe hypovolemia or hemorrhage
Littman, et al. approach to PEA

• Narrow QRS → Note that chest compressions can be harmful here!!
 – Tamponade
 – Tension PTX
 – Mechanical hyperinflation
 – Massive PE
 – Severe hypovolemia or hemorrhage
Next, look at the bedside ultrasound if Dx unclear, usually hyperdynamic
- Tamponade
- Tension PTX
- Mechanical hyperinflation
- Massive PE
- Severe hypovolemia or hemorrhage
Littmnan, et al.
approach to PEA

- Next, look at the bedside ultrasound if Dx unclear, usually hyperdynamic
Littman, et al. approach to PEA

- Treat the cause or give VOLUME
 - Tamponade
 - Tension PTX
 - Mechanical hyperinflation
 - Massive PE
 - Severe hypovolemia or hemorrhage
Littman, et al. approach to PEA

• What if the QRS is wide?
Littman, et al. approach to PEA

- Wide QRS → metabolic, tox, or severe LV problem ("true PEA")
Littman, et al. approach to PEA

- Wide QRS \rightarrow metabolic, tox, or severe LV problem ("true PEA")
 - Severe hyperK$^+$
 - Sodium channel blocker toxicity
 - Severe metabolic acidosis
 - Massive MI with pump failure
Littman, et al. approach to PEA

- Next, look at the bedside ultrasound if Dx unclear, usually hypokinetic
 - Severe hyperK⁺
 - Sodium channel blocker toxicity
 - Severe metabolic acidosis
 - Massive MI with pump failure
Littman, et al. approach to PEA

- Give empiric NaHCO$_3$, Ca$^{++}$, consider cath or lytics if MI suspected by Hx
 - Severe hyperK$^+$
 - Sodium channel blocker toxicity
 - Severe metabolic acidosis
 - Massive MI with pump failure (usually die)
Littman, et al. approach to PEA

- What’s missing?
Littman, et al. approach to PEA

- What’s missing?
 - Hypoxia
 - HypoK+
 - Hypoglycemia
 - Hypothermia
Littman, et al.
approach to PEA

- What’s missing?
 - Hypoxia → no evidence
 - HypoK⁺ → no evidence
 - Hypoglycemia → no evidence
 - Hypothermia → use a thermometer!
Littman, et al. approach to PEA

• What’s missing?
 – Other toxins, e.g. BBs and CCBs
 • Typically present with hypotension, sinus brady or sinus arrest, AV blocks
 • If PEA occurs, typically narrow QRS and slow and dx almost always established by then
Summary

PEA – EVALUATION

QRS NARROW
MECHANICAL (RV) PROBLEM
- Cardiac tamponade
- Tension PTX
- Mechanical hyperinflation
- Pulmonary embolism

QRS WIDE
METABOLIC (LV) PROBLEM
- Severe hyperkalemia
- Sodium-channel blocker toxicity

AGONAL RHYTHM

ACUTE MI
Myocardial rupture

BEDSIDE US: LV HYPERDYNAMIC PSEUDO-PEA

LV HYPOKINETIC OR AKINETIC TRUE PEA

Severe hypovolemia or hemorrhage

ACUTE MI
Pump failure
Summary

PEA – MANAGEMENT

QRS NARROW
MECHANICAL (RV) PROBLEM

• Cardiac tamponade
• Tension PTX
• Mechanical hyperinflation
• Pulmonary embolism

→ WIDE OPEN FLUIDS, PLUS:

PERICARDIOCENTESIS
NEEDLE DECOMPRESSION
VENTILATOR MANAGEMENT
THROMBOLYSIS

PEA – MANAGEMENT

QRS WIDE
METABOLIC (LV) PROBLEM

• Severe hyperkalemia
• Sodium-channel blocker toxicity

PHARMACOLOGIC MANAGEMENT

IV CALCIUM CHLORIDE
IV SODIUM BICARBONATE BOLUSES
PEA – MANAGEMENT

QRS NARROW
MECHANICAL (RV) PROBLEM

• Cardiac tamponade
• Tension PTX
• Mechanical hyperinflation
• Pulmonary embolism

WIDE OPEN
FLUIDS, PLUS:

PERICARDIOCENTESIS

NEEDLE DECOMPRESSION

VENTILATOR
MANAGEMENT

THROMBOLYSIS

Note that chest compressions could be harmful here
Summary

PEA – MANAGEMENT

PHARMACOLOGIC MANAGEMENT

QRS WIDE
METABOLIC (LV) PROBLEM

• Severe hyperkalemia
• Sodium-channel blocker toxicity

IV CALCIUM CHLORIDE
IV SODIUM BICARBONATE BOLUSES
Thanks!
Questions: amalmattu@comcast.net
Thanks!

PDF of slides: lectures.umem.org/Mattu