UMEM Educational Pearls - Critical Care

Title: Accidental Hypothermia

Category: Critical Care

Posted: 11/3/2017 by Ashley Menne, MD (Updated: 11/22/2024)
Click here to contact Ashley Menne, MD

Core Temp <32 degrees leads to impaired shivering and confers increased risk for malignant ventricular dysrhythmias. Core Temp <28 degrees substantially increases risk of cardiac arrest. 

 

If in cardiac arrest:

  • VA ECMO. Rewarming rate ~6 degrees per hour.
  • Cardio Pulmonary Bypass. Rewarming Rate ~9 degrees per hour.
  • Consider transfer to center with ECMO or CPB capabilities
  • Consider up to 3 defibrillation attempts for shockable rhythm
  • Consider with holding epi until core temp >30 degrees and doubling interval between doses (q6-10 minutes) until core temp >35 (European Resuscitation Council recs – note this differs from AHA guidelines/recommendations)

 

If perfusing rhythm:

  • Institute active external rewarming (warm environment, forced-air heating blankets, arctic sun, warm parenteral fluids). Rewarming Rate ~ 0.1-3.4 degrees per hour.
  • Consider minimally invasive rewarming with TTM cooling/rewarming catheter (Alsius/Zoll) via femoral vessel. Rewarming Rate ~3.5 degrees per hour.
  • Hemodialysis or CRRT can be considered if intravascular rewarming device unavailable. Rewarming rate 2-4 degrees per hour.
  • Avoid IJ or SC central lines, rewarming catheters, and HD catheters -- myocardial irritation with wire/catheter may precipitate ventricular dysrhythmia.

 

Consider addition of more invasive rewarming techniques in those with hemodynamic/cadiac instability or without access to VA ECMO/CPB:

  • Thoracic lavage. Rewarming rate ~ 3 degrees per hour
  • Peritoneal lavage. Rewarming rate ~ 1-3 degrees per hour  
  •  

Consider stopping resuscitation efforts if/when:

  • K >12- suggests hypoxia before cooling, no reported survivors. Some recommend K of 10 as cutoff in adults.
  • Rewarmed to 32 degrees and no signs of life.

Show References



Improving CPR Performance

  • High-quality CPR is the cornerstone of successfull resuscitation from cardiac arrest.
  • In fact, high-quality CPR is considered the most important intervention for achieving ROSC and good neurologic recovery.
  • Pearls for optimizing CPR performance include:
    • Use a team-focused approach
    • Avoid leaning and ensure complete recoil of the chest
    • Target a chest compression fraction of at least 60%
    • Use POCUS, but pay attention to the duration of hands-off time
    • Target ETCO2 of > 20 mm Hg

Show References



Title: Liver Dialysis on MARS (Molecular Adsorbent Recirculating System)

Category: Critical Care

Keywords: liver failure, dialysis, MARS, Molecular Adsorbent Recirculating System (PubMed Search)

Posted: 10/10/2017 by Kami Windsor, MD
Click here to contact Kami Windsor, MD

Molecular Adsorbent Recirculating System (MARS) is an artificial liver support system colloquially known in the medical field as "dialysis for the liver."  

  • Limited data, small studies
  • Consistently shown to improve hemodynamics, toxin clearance, and hepatic homeostasis
  • No consistent proven mortality benefit
  • Only performed by limited number of US hospitals (including the University of Maryland)
  • May depend on the acute liver failure subpopulation, but best use currently seems to be for severe acute liver failure due to a potentially reversible/recoverable cause (toxin ingestion, trauma, acute alcoholic hepatitis, etc) or as a bridge to transplant

Take-Home:

1. Consider MARS in your patient with severe acute liver failure due to potentially reversible/recoverable etiology

2. Know if and where MARS is offered near you

 

(http://findbesttreatment.com/images/healthnet_dialyse_schema.gif)

Show Additional Information

Show References



Risk of Pneumocystis pneumonia  (PCP) increases with degree of immunosuppression. If clinical suspicion exists (CD4 <200 with cough, pulmonary infiltrates, hypoxic respiratory failure), it is reasonable to initiate empiric therapy. 

First line treatment is trimethoprim-sulfamethoxazole (TMP-SMX) orally or IV for 21 days.  IV pentamidine has equivalent efficacy to IV TMP-SMX but greater toxicity and is generally reserved for patients with severe PCP who cannot tolerate or are unresponsive to TMP-SMX.

Importantly, adjunctive corticosteroids have been shown to significantly improve outcomes (mortality, need for ICU admission, need for mechanical ventilation) in HIV-infected patients with moderate to severe PCP (defined by pO2 <70 mmHg on Room Air).

·      Ideally steroids should be started BEFORE (or at the same time as) Pneumocystis-specific treatment to prevent/mitigate the sharp deterioration in lung function that occurs in most patients after initiation of PCP treatment. This is thought to be secondary to the intense inflammatory response to lysis of Pneumocystis organisms, which can cause an ARDS-like picture.

·      Recommended dosing schedule: 40mg prednisone twice daily for 5 days,  then 40mg once daily for 5 days, followed by 20mg once daily for the remaining 11 days of treatment.

 

Bottom Line: In patients with moderate to severe PCP (pO2 <70 mmHg on RA), don’t forget to initiate adjunctive corticosteroids early (at the same time you initiate empiric therapy for PCP). 

Show References



Post-Arrest Tidal Volume Setting

  • Most patients with ROSC from out-of-hospital cardiac arrest undergo endotracheal intubation and mechanical ventilation.
  • Optimal management of mechanical ventilation for the post-arrest patient is currently not well defined.
  • A recent retrospective cohort study sought to determine if a lower tidal volume (Vt) was associated with improved neurocognitive outcome at hospital discharge.
  • Of 256 patients included in the study, investigators found:
    • 38% were ventilated with Vt > 8 ml/kg predicted body weight
    • Lower Vt was significantly associated with favorable neurocognitive outcome, decreased duration of mechanical ventilation, and decreased ICU length of stay
  • Take Home Pearl: Pay attention to Vt in the post-arrest patient.

Show References



Title: Negative-Pressure Pulmonary Edema

Category: Critical Care

Keywords: respiratory failure, pulmonary edema, airway obstruction (PubMed Search)

Posted: 9/12/2017 by Kami Windsor, MD
Click here to contact Kami Windsor, MD

Negative-pressure pulmonary edema (NPPE) is a well-documented entity that occurs after a patient makes strong inspiratory effort against a blocked airway. The negative pressure causes hydrostatic edema that can be life-threatening if not recognized, but if treated quickly and appropriately, usually resolves after 24-48 hours. These patients may have any type of airway obstruction, whether due to edema secondary to infection or allergy, laryngospasm, or traumatic disruption of the airway, such as in attempted hangings.

Management: 

1.     Alleviate or bypass the airway obstruction.

·      Usually via intubation; may require a surgical airway

·      If obstruction in an intubated patient is due to biting on tube or dyssynchrony, add bite-block (if not already in place), sedation, and even paralysis if needed.

2.     Provide positive pressure ventilation and oxygen supplementation.

3.     Use low tidal volume ventilation.

4.     In severe hypoxemia without shock, add a diuretic agent and consider additional measures such as proning and even ECMO if the hypoxemia is refractory to standard therapy.  

Show Additional Information

Show References



Background: Sedation and analgesia are key components for mechanically ventilated patients. While significant data exists regarding how to manage sedation and analgesia in the ICU setting, very little data exists on management in the ED.

Data: A prospective, single-center, observational study of mechanically-ventilated adult patients used linear regression to identify ED sedation practices and outcomes, with a focus on sedation characteristics using the Richmond Agitation-Sedation Scale (RASS).

Findings:

  • 15% of intubated patients had no sedation or analgesia ordered
  • 64% of intubated patients were documented as deeply-sedated (RASS -3 to -5)
  • Deep sedation was not only associated with more ventilator days, but also increased mortality, with an adjusted OR of 0.77 (95% CI 0.54-0.94) favoring patients with lighter sedation.


Bottom line:  Avoid early deep sedation in your intubated patients as this may be directly associated with increased mortality. Instead, a goal RASS of 0 to -2 should be appropriate for most non-paralyzed, mechanically-ventilated ED patients, extrapoloating from ICU guidelines.

Show References



Hyponatremic Encephalopathy

  • Hyponatremic encephalopathy is a true emergency and due to hypoosmolar-induced cerebral edema.
  • In contrast to the asymptomatic patient with hyponatremia, treatment of hyponatremic encephalopathy is determined by symptoms and not the duration of hyponatremia.
  • Clinical manifestations include nausea, vomiting, headache, confusion, seizures, respiratory failure, and coma.
  • Hypertonic saliine is the treatment of choice
    • Administer 2 ml/kg 3% hypertonic saline (100 ml in many cases)
    • This will typically raise serum sodium 2 mEq/L
    • In most cases, a 4-6 mEq/L rise will reverse neurologic symptoms

Show References



Title: Catastrophic Antiphospholipid Syndrome

Category: Critical Care

Keywords: autoimmune, rheumatology, thrombosis, hematology (PubMed Search)

Posted: 8/15/2017 by Kami Windsor, MD
Click here to contact Kami Windsor, MD

Catastrophic Antiphospholipid Syndrome (CAPS):

A life-threatening “thrombotic storm” of multi-organ micro & macro thrombosis in patients with antiphospholipid syndrome (known or unknown).

Triggered circulating antibodies (usually by infection, but can be prompted by malignancy, pregnancy, and lupus itself) cause endothelial disruption and inflammation leading to prothrombotic state, commonly with SIRS response.

Mortality is high at an estimated 40%.

Confirm diagnosis with antiphospholipid antibody titers.

Treat ASAP with unfractionated heparin, corticosteroids, and Hematology consultation for plasma exchange and/or IVIG.

Show References



Title: APRV Effects on RV Function

Category: Critical Care

Keywords: RV dysfunction, APRV, echo, ultrasound (PubMed Search)

Posted: 8/1/2017 by Daniel Haase, MD
Click here to contact Daniel Haase, MD

--RV systolic function is negatively affected by high RV afterload

--High mean airway pressures on the ventilator (particularly in modes such as APRV [airway pressure release ventilation]) can induce RV dysfunction

*****CLICK BELOW FOR A GREAT CASE!!!*****

Show Additional Information

Attachments



Improving Resuscitation Performance

  • Resuscitating the critically ill patient can often be quite stressful.
  • Stress has been shown to decrease the quality and effectiveness of decisions, decrease the amount of information a person can process, and lead to short-term memory deficits.
  • Recently, there has been emphasis on the use of performance-enhancing psychological skills (PEPS) to allow providers to think clearly, maintain situational awareness, recall important information, and perform skills efficiently.
  • A recent article highlights 4 key elements of an EM model for PEPS that can be used to improve performance in resuscitations.
    • Breathe - consider tactical breathing
    • Talk - positive instructional or motivational self-talk
    • See - visualize the steps of a procedure before actually performing it
    • Focus - use a trigger word as a prompt to shift attention to a prioritized task

Show References



Title: Benefits of Family Presence During CPR

Category: Critical Care

Keywords: Resuscitation, CPR, family, policy (PubMed Search)

Posted: 7/17/2017 by Kami Windsor, MD
Click here to contact Kami Windsor, MD

When surveyed, half of general medicine patients interviewed stated that they would prefer to have a loved one present if they were to develop cardiac arrest and require CPR. So far, studies have demonstrated that…

Allowing family presence during CPR is associated with the following benefits to family members:

  • Decreased rates of PTSD-related symptoms
  • Decreased scores on anxiety and depression scales
  • Decreased incidence of complicated grief
  • Decreased incidence of family member regret (at having been present vs absent during CPR)

And is NOT associated with a difference in:

  • Survival rate
  • Duration of resuscitation efforts
  • Type or dose of administered medications
  • Number of shocks delivered
  • Emotional stress level of medical providers
  • Occurrence of medicolegal conflict

Show Additional Information

Show References



Title: Ventilation During Cardiopulmonary Resuscitation

Category: Critical Care

Keywords: CPR, ventilation, respiratory rate, PaCO2 (PubMed Search)

Posted: 6/27/2017 by Mike Winters, MBA, MD
Click here to contact Mike Winters, MBA, MD

Ventilation During Cardiopulmonary Resuscitation  

  • Cardiopulmonary resuscitations are often highly stressful and chaotic situations.  As a result, it is no surprise that ventilation rates can be as high as 60 breaths per minute.  
  • Hyperventilation during cardiopulmonary resuscitation can increase intrathoracic pressure, impair venous return, decrease coronary perfusion pressure, and ultimately decrease survival.
  • It is imperative that the team leader pay close attention to ventilation and ensure that approximately 8 to 10 breaths per minute are delivered.
  • Once ROSC is achieved, the respiratory rate should be adjusted to maintain a PaCO2 between 40 and 45 mm Hg.  

Show References



In patients with persistent VT/VF cardiac arrest, giving epinephrine before the 2nd defibrillation attempt (which should follow initial shock and 2 minutes of CPR) is associated with decreased ROSC, decreased hospital survival, and decreased functional outcome. 

Take Home Point:

"Electricity before Epi" in patients with persistent VT/VF arrest, at least for the initial epinephrine dose.

Show Additional Information

Show References



The poor sensitivity of bedside echocardiography to identify all-comers with pulmonary embolism is well documented. Most series cite a sensitivity and specificity of 31% to 72% and 87% to 98%, respectively (1,2). But as Nazerian et al demonstrate in their recent publication in Internal and Emergency Medicine, the diagnostic performance of bedside echocardiography is far more reliable in the subset of patients presenting in shock (3).

Of the 105 patients included in the final analysis, in 43 (40.9%) PE was determined to be the etiology of their shock. Bedside echo demonstrated notable diagnostic prowess when employed in this subset of patients, sensitivity (91%), specificity (87%), –LR (0.11), +LR (7.03). The sensitivity and –LR were further augmented when the venous US of the LE was included (sensitivity of 95% and –LR of 0.06) in the diagnostic workup. 

Show References



Antibiotics in Sepsis

  • Currently international guidelines for the management of sepsis and septic shock recommend antibiotic administration within 1 hour of recognition.
  • With the persistent problem of ED boarding, many patients with sepsis and septic shock remain in the ED long after the initial dose of broad-spectrum antibiotics.
  • A recent single center, retrospective cohort study demonstrated that 1 out of 3 patients with sepsis or septic shock experienced major delays in the time to the second dose of antibiotics.  In fact, over 70% of patients who were given an initial antibiotic with a 6-hr recommended dosing interval experienced major delays.
  • Inpatient boarding in the ED was found to be an independent risk factor for major delays.
  • Take Home Point: Don't forget to write for additional doses of antibiotics in your boarding patients with sepsis.

Show References



High flow nasal cannula (HFNC) is a valid option in the management of acute hypoxic respiratory failure (AHRF) without hypercapnia, as evidenced by multiple studies including the FLORALI trial. Failure of HFNC, however, may result in delayed intubation and worsened clinical outcomes. 

Factors predicting HFNC failure and subsequent intubation include:

  • Lack of RR improvement at 30 and 45 minutes after initation of HFNC
  • Lack of SpO2% improvement at 15, 30, and 60 minutes
  • Persistence of paradoxic breathing (thoracoabdominal dyssynchrony) at 15, 30, 60, and 120 minutes
  • Presence of additional organ system failure, especially hemodynamic (shock) or neurologic (depressed mental status)

Consider whether or not HFNC is appropriate in your patient with AHRF, and if you use it, reevaluate your patient to ensure improvement, or escalate their respiratory support. 

Show Additional Information

Show References



Ventilator Settings for the Post-Arrest Patient

  • The majority of patients with ROSC from OHCA require intubation and mechanical ventilation.
  • Correctly managing the ventilator in the post-arrest patient is critical for improving outcomes.
  • As patients are at high risk for ARDS, use lung-protective ventilation with tidal volumes between 6 to 8 ml/kg of ideal body weight and PEEP of 5 to 8 cm H2O.
  • There is a U-shaped relationship between neurologic outcomes and both PaO2 and PaCO2.
    • Target normoxia (SpO2 94% to 96%) and avoid hyperoxia and hypoxia.
    • Target normocapnia (PaCO2 40 to 50 mm Hg) and avoid hypercapnia and hypocapnia.
  • Use an analgosedation approach with short-acting analgesics and sedatives, such as fentanyl and propofol.

Show References



Title: Use Ultrasound to confirm CVC placement

Category: Critical Care

Keywords: Central venous catheter, ultrasound (PubMed Search)

Posted: 4/18/2017 by Kami Windsor, MD (Updated: 11/22/2024)
Click here to contact Kami Windsor, MD

Save time by using bedside ultrasound to confirm above-the-diaphragm central venous catheter (CVC) placement rather than waiting for chest x-ray confirmation:

1. Perform rapid push of saline (it doesn’t have to be agitated) through CVC while cardiac probe is placed with right atrium in view. Immediate visualization of bubbles (or “atrial swirl”) essentially confirms correct placement.

2. Perform the usual search for ipsilateral lung-sliding and the waves-on-the-beach to rule out procedural pneumothorax.

 

 

Show Additional Information

Show References



Title: Avoiding Hyperoxia in Patients on Mechanical Ventilation

Category: Critical Care

Keywords: Hyperoxia, Mechanical Ventilation (PubMed Search)

Posted: 4/11/2017 by Rory Spiegel, MD (Updated: 11/22/2024)
Click here to contact Rory Spiegel, MD

The deleterious effects of hyperoxia are becoming more and more apparent. But obtaining a blood gas to ensure normoxia in a busy Emergency Department can be burdensome. And while the utilization of a non-invasive pulse oximeter seems ideal, the threshold that best limits the rate of hyperoxia is unclear.

Durlinger et al in a prospective observational study demonstrated that an oxygen saturation 95% or less effectively limited the number of patients with hyperoxia (PaO2 of greater than 100 mm Hg). Conversely when an SpO2 of 100% was maintained, 84% of the patients demonstrated a PaO2 of greater than 100 mm Hg.

 

Show References